Friday, September 14, 2007

Geographic qualitative methods


Main article: Ethnography

Geographic qualitative methods, or ethnographical; research techniques, are used by human geographers. In cultural geography there is a tradition of employing qualitative research techniques also used in anthropology and sociology. Participant observation and in-depth interviews provide human geographers with qualitative data.

Geographic quantitative methods


Geostatistics deal with quantitative data analysis, specifically the application of statistical methodology to the exploration of geographic phenomena. Geostatistics is used extensively in a variety of fields including: hydrology, geology, petroleum exploration, weather analysis, urban planning, logistics, and epidemiology. The mathematical basis for geostatistics derives from cluster analysis, discriminant analysis, and non-parametric statistical tests, and a variety of other subjects. Applications of geostatistics rely heavily on Geographic Information Systems, particularly for the interpolation (estimate) of unmeasured points. Geographers are making notable contributions to the method of quantitative techniques.

Remote sensing


Remote sensing can be defined as the art and science of obtaining information about Earth features from measurements made at a distance. Remotely sensed data comes in many forms such as satellite imagery, aerial photography and data obtained from hand-held sensors. Geographers increasingly use remotely sensed data to obtain information about the Earth's land surface, ocean and atmosphere because it: a) supplies objective information at a variety of spatial scales (local to global), b) provides a synoptic view of the area of interest, c) allows access to distant and/or inaccessible sites, d) provides spectral information outside the visible portion of the electromagnetic spectrum, and e) facilitates studies of how features/areas change over time. Remotely sensed data may be analyzed either independently of, or in conjunction with, other digital data layers (e.g., in a Geographic Information System).

Geographic information systems


Example of GIS software (Idrisi, Clark Labs).
Example of GIS software (Idrisi, Clark Labs).

Geographic information systems (GIS) deal with the storage of information about the Earth for automatic retrieval by a computer, in an accurate manner appropriate to the information's purpose. In addition to all of the other subdisciplines of geography, GIS specialists must understand computer science and database systems. GIS has revolutionized the field of cartography; nearly all mapmaking is now done with the assistance of some form of GIS software. GIS also refers to the science of using GIS software and GIS techniques to represent, analyze and predict spatial relationships. In this context, GIS stands for Geographic Information Science.

Cartography


Cartography studies the representation of the Earth's surface with abstract symbols (map making). Although other subdisciplines of geography rely on maps for presenting their analyses, the actual making of maps is abstract enough to be regarded separately. Cartography has grown from a collection of drafting techniques into an actual science.

Cartographers must learn cognitive psychology and ergonomics to understand which symbols convey information about the Earth most effectively, and behavioral psychology to induce the readers of their maps to act on the information. They must learn geodesy and fairly advanced mathematics to understand how the shape of the Earth affects the distortion of map symbols projected onto a flat surface for viewing. It can be said, without much controversy, that cartography is the seed from which the larger field of geography grew. Most geographers will cite a childhood fascination with maps as an early sign they would end up in the field.

Geographical techniques


As spatial interrelationships are key to this synoptic science, maps are a key tool. Classical cartography has been joined by a more modern approach to geographical analysis, computer-based geographic information systems (GIS).

In their study, geographers use four interrelated approaches:

  • Systematic - Groups geographical knowledge into categories that can be explored globally.
  • Regional - Examines systematic relationships between categories for a specific region or location on the planet.
  • Descriptive - Simply specifies the locations of features and populations.
  • Analytical - Asks why we find features and populations in a specific geographic area.

Related fields


  • Urban planning, regional planning and spatial planning: use the science of geography to assist in determining how to develop (or not develop) the land to meet particular criteria, such as safety, beauty, economic opportunities, the preservation of the built or natural heritage, and so on. The planning of towns, cities and rural areas may be seen as applied geography.
  • Interplanetary Sciences: While the discipline of geography is normally concerned with the Earth, the term can also be informally used to describe the study of other worlds, such as the planets of the solar system, and even beyond. The study of systems larger than the earth itself usually forms part of Astronomy or Cosmology. The study of other planets is usually called planetology. Alternative terms such as areology (the study of Mars) have been proposed but are not widely used.

Regional geography

Regional geography is a branch of geography that studies the regions of all sizes across the Earth. It has a prevailing descriptive character. The main aim is to understand or define the uniqueness or character of a particular region which consists of natural as well as human elements. Attention is paid also to regionalization which covers the proper techniques of space delimitation into regions.

Regional geography is also considered as a certain approach to study in geographical sciences (similar to quantitative or critical geographies, for more information see History of geography).

Geomatics


Digital Elevation Model (DEM)
Digital Elevation Model (DEM)

Geomatics is a branch of geography that has emerged since the quantitative revolution in geography in the mid 1950s. Geomatics involves the use of traditional spatial techniques used in cartography and topography and their application to computers. Geomatics has become a widespread field with many other disciplines using techniques such as GIS and remote sensing. Geomatics has also lead to a revitalisation of some geography departments especially in Northern America where the subject had a declining status during the 1950s.

Geomatics encompasses a large area of fields involved with spatial analysis, such as Cartography, Geographic information systems (GIS), Remote sensing and GPS.

Environmental geography


Environmental geography is the branch of geography that describes the spatial aspects of interactions between humans and the natural world. It requires an understanding of the traditional aspects of physical and human geography, as well as the ways in which human societies conceptualize the environment.

Environmental geography has emerged as a bridge between human and physical geography as a result of the increasing specialisation of the two sub-fields. Furthermore, as human relationship with the environment has changed as a result of globalisation and technological change a new approach was needed to understand the changing and dynamic relationship. Examples of areas of research in environmental geography include disaster management, environmental management, sustainability and political ecology.

Human geography

Human geography is a branch of geography that focuses on the study of patterns and processes that shape human interaction with various environments. It encompasses human, political, cultural, social, and economic aspects. While the major focus of human geography is not the physical landscape of the Earth (see physical geography), it is hardly possible to discuss human geography without referring to the physical landscape on which human activities are being played out, and environmental geography is emerging as a link between the two. Human geography can be divided into many broad categories (for a comprehensive list see human geography), such as:

Cultural geography Development geography Economic geography Health geography Historical & Time geography Political geography & Geopolitics Population geography or Demography
Religion geography Social geography Transportation geography Tourism geography Urban geography

Various approahes to the study of human geography have also arisen through time and include:

Branches of geography

Physical geography

Physical geography (or physiogeography) focuses on geography as an Earth science. It aims to understand the physical features of the Earth, its lithosphere, hydrosphere, atmosphere, pedosphere and global flora and fauna patterns (biosphere). Physical Geography can be divided into the following broad categories:

Biogeography Climatology & paleoclimatology Coastal geography Environmental geography & management Geodesy Geomorphology Glaciology
Hydrology & Hydrography Landscape ecology Oceanography Pedology Palaeogeography Quaternary science

Introduction


Traditionally, geography as well as geographers has been viewed as the same as cartography and people who study place names. Although many geographers are trained in toponymy and cartography, this is not their main preoccupation. Geographers study the spatial and temporal distribution of phenomena, processes and feature as well as the interaction of humans and their environment. As space and place affect a variety of topics such as economics, health, climate, plants and animals, geography is highly interdisciplinary.

mere names of places...are not geography... know by heart a whole gazetteer full of them would not, in itself, constitute anyone a geographer. Geography has higher aims than this: it seeks to classify phenomena (alike of the natural and of the political world, in so far as it treats of the latter), to compare, to generalize, to ascend from effects to causes, and, in doing so, to trace out the great laws of nature and to mark their influences upon man. This is 'a description of the world'—that is Geography. In a word Geography is a Science—a thing not of mere names but of argument and reason, of cause and effect.

Geography as a discipline can be split broadly into two main sub fields: human geography and physical geography. The former focuses largely on the built environment and how space is created, viewed and managed by humans as well as the influence humans have on the space they occupy. The latter examines the natural environment and how the climate, vegetation & life, soil, water and landforms are produced and interact.[6] As a result of the two subfields using different approaches a third field has emerged, which is environmental geography. Environmental geography combines physical and human geography and looks at the interactions between the environment and humans.[4]


Geography


From Wikipedia, the free encyclopedia


Map of the Earth
Map of the Earth
Geography (from the Greek words Geo (γη) or Gaea (γαια), both meaning "Earth", and graphein (γραφειν) meaning "to describe" or "to write"or "to map") is the study of the earth and its features, inhabitants, and phenomena.[1] A literal translation would be "to describe the Earth". The first person to use the word "geography" was Eratosthenes (275-195 B.C.). Four historical traditions in geographical research are the spatial analysis of natural and human phenomena (geography as a study of distribution), area studies (places and regions), study of man-land relationship, and research in earth sciences.[2] Nonetheless, modern geography is an all-encompassing discipline that foremost seeks to understand the world and all of its human and natural complexities-- not merely where objects are, but how they have changed and come to be. As "the bridge between the human and physical sciences," geography is divided into two main branches - human geography and physical geography